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Abstract It is well known that oscillations in models of biochemical reaction net-
works can arise as a result of a single negative cycle. On the other hand, methods for
finding general network conditions for potential oscillations in large biochemical reac-
tion networks containing many cycles are not well developed. A biochemical reaction
network with any number of species is represented by a simple digraph and is mod-
eled by an ordinary differential equation (ODE) system with non-mass action kinetics.
The obtained graph-theoretic condition generalizes the negative cycle condition for
oscillations in ODE models to the existence of a pair of subnetworks, where each
subnetwork contains an even number of positive cycles. The technique is illustrated
with a model of genetic regulation.

Keywords Biochemical reaction networks · Non-mass action kinetics · Oscillations ·
Negative feedback cycle

1 Introduction

Modeling oscillations in biochemical models usually involves the analysis of a sys-
tem of ordinary differential equations (ODE) with non-mass action kinetics [8,11,
13,14,33,34,37,39]. Many of the classical models of biochemical reaction networks
showing oscillations contain a single negative cycle [11,13,14,37,38]. Since realistic
biochemical networks contain a large number of cycles, models incorporating several
negative cycles have started to appear in the literature [8,33]. The aim of this paper is
to provide a general graph-theoretic condition for oscillations which is applicable to
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biochemical reaction networks with a large number of cycles, and which generalizes
the negative cycle condition for oscillations.

A major topic of systems biology is the connection between small recurring net-
work motifs and their corresponding biological function [16,19,26]. Some motifs,
such as negative or positive cycles are shown to be responsible for oscillations or
multistability in biochemical reaction networks [3,4,12,29,34,39]. In this article we
show that more complex combinations of positive or negative cycles, such as pairs of
negative cycles, or even pairs of subnetworks with an even number of positive cycles,
can be responsible for oscillations.

Biochemical reaction networks are often represented by different types of graphs
[5,7,10,29,40]. We study ODE models of biochemical reaction networks with non-
mass action kinetics, where the networks are represented as simple digraphs [15]. The
mass action kinetics counterpart to this problem where the network is represented by
a bipartite graph [15] is studied in [27]. The critical pair of fragments condition for
oscillations includes the negative cycle condition for oscillations as a special case [27].
In this work a similar graph-theoretic condition for oscillations in ODE models with
non-mass action kinetics is obtained.

The eigenvalues of the Jacobian matrix associated with an ODE system determine
the stability of its equilibria. If an equilibrium solution of an ODE system becomes
unstable via a single pair of complex conjugated eigenvalues, then simple Hopf bifur-
cation and oscillations occur. In this paper we will study oscillations arising from Hopf
bifurcation only.

Inspection of the digraph of a biochemical reaction network for pairs of subnetworks
that can be responsible for oscillations is only part of the process. Once a structure
in the digraph that can lead to oscillations is identified, it should be verified that the
Jacobian matrix satisfies additional algebraic conditions.

The preliminaries on the ODE model of a biochemical reaction network are
explained in Sect. 2. The main idea of the graph-theoretic analysis is introduced in
Sect. 3. Using the new graph-theoretic condition, an example of oscillations in a
genetic regulation model [23] is studied in Sect. 4.

2 Preliminaries

In this section we describe the ODE model of a biochemical reaction network with
non-mass action kinetics. The Jacobian matrix associated with the ODE model and its
characteristic polynomial are introduced along with some basic assumptions.

The rate of change of the concentration of any biochemical species depends on
the rates of the reactions that produce and consume it. We study biochemical reaction
networks with n biochemical species A1, A2, . . . , An , and m reactions which are not
necessarily elementary. Let the concentration of Ak be denoted by uk, k = 1, . . . , n,
and let u = (u1, . . . , un) be the vector of all concentrations. The rate functions are usu-
ally given by mass action, Michaelis–Menten or Hill type kinetics [18]. For example,
the function

g1(u) = k1u

k2 + u
, (1)

123



J Math Chem (2012) 50:1111–1125 1113

where u is the concentration of a substrate and k1 > 0, k2 > 0 are kinetic parameters
is of Michaelis–Menten type. The function g1(u) is called activating since g′

1(u) > 0.
Examples of inhibiting Michaelis–Menten functions are given in [18]. An example of
an inhibiting Hill type function is

g2(u) = k1

k2 + uh
, (2)

where k1 > 0, k2 > 0 are kinetic parameters, and h > 0 is referred to as a Hill
coefficient. Note that g′

2(u) < 0 for the inhibiting rate function (2)
The ODE system

duk

dt
= fk(u), k = 1, . . . , n (3)

represents the time evolution of the concentrations uk(t) of the biochemical species
Ak , where fk(u) are continuously differentiable functions. We assume that fk(u) is
the sum of rate functions, such as Michaelis–Menten type (1), Hill type (2) or mass
action kinetics type, multiplied by the stoichiometric coefficients of the reaction.

Let p > 0 be the vector of kinetic parameters contained in fk(u), k = 1, . . . , n.
We assume that the ODE system (3) has at least one positive equilibrium solution
u∗(p) > 0, which depends continuously on the parameter values p.

The Jacobian matrix J = [Jkl ] of the right-hand side of the ODE system (3) plays
an important role in determining the stability of the equilibrium solutions of (3) and the
possible bifurcations [20]. Let the (k, l) entry of the Jacobian matrix of the right-hand
side of (3) be

Jkl(p) = ∂ fk(u)

∂ul
, (4)

where it is assumed that (4) is evaluated at a positive equilibrium u = u∗(p) of (3).
The Jacobian (4) depends continuously on the parameters p, since u∗(p) depends con-
tinuously on p. Also, the following important assumption, which is usually satisfied
for ODE models such as (3), will be made from now on:

(A1) Every non-zero entry Jkl(p) of the Jacobian matrix (4) is either positive or neg-
ative for all parameter values p. In addition, every diagonal entry Jkk(p), k =
1, . . . , n of (4) is negative for all parameter values p.

The eigenvalues of the Jacobian matrix (4) determine the stability of an equilib-
rium solution u∗(p) of the ODE system (3) and can be computed as the roots of the
corresponding characteristic polynomial

s(λ) = det(λI − J (p)) = λn + a1(p)λn−1 + · · · + an(p). (5)

Since the entries Jkl(p) of the Jacobian (4) depend continuously on p, it follows that
the coefficients ak(p) of (5) depend continuously on p. For large ODE systems with
many parameters, such as (3), finding the roots of the corresponding characteristic
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polynomial (5) symbolically is not always possible. Instead, we will use the coeffi-
cients ak(p) of the characteristic polynomial (5) to show the existence of roots with a
zero real part which will indicate possible instability and bifurcations.

Any coefficient ak(p) of (5) is the sum of all principal minors M(−J (p))(Ik) of
the negative Jacobian (4), where Ik = {i1, . . . , ik} is a subset of In = {1, . . . , n}, [21]

ak(p) =
∑

Ik⊆In

M(−J (p))(Ik), k = 1, . . . , n. (6)

Let λi , i = 1, . . . , n be the eigenvalues of the Jacobian (4) and let their corre-
sponding real parts be denoted by �(λi ). Since the coefficients ak(p) of (5) depend
continuously on p, it follows that the eigenvalues λi (p) of (4) depend continuously
on p.

We define the open set of parameters

S = {p | �(λi (p)) < 0 , i = 1, . . . , n}, (7)

which is assumed to be non-empty, bounded and connected in order to simplify the
analysis. Let the closure of the set S be denoted by S̄. We say that the Jacobian matrix
J (p) is a stable matrix if and only if p ∈ S. The Jacobian matrix J (p) has an eigenvalue
with a zero real part if and only if p ∈ ∂S, where ∂S is the boundary of the set S.

3 Main results

First we introduce a sufficient algebraic condition for the model ODE system (3) to
have a Jacobian matrix (4) with a single pair of purely imaginary eigenvalues. This
condition leads to a sufficient condition for Hopf bifurcation and oscillations using a
theorem from [22]. Then the digraph associated with a biochemical reaction network
is defined, as well as structures in the digraph, such as cycles and subfactors that are
necessary for the graph-theoretic analysis. The graph-theoretic condition for oscilla-
tions is based on a sufficient condition for zero Hurwitz determinant of (n −1)st order
which is introduced next.

The Hurwitz matrix of kth order where a j (p) are the coefficients of (5) is defined
by

Mk(p) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1(p) a3(p) a5(p) a7(p) . . .

1 a2(p) a4(p) a6(p) . . .

0 a1(p) a3(p) a5(p) . . .

0 1 a2(p) a4(p) . . .

. . . . . . . . . . . . . . .

0 . . . . . . ak−1(p) ak+1(p)

0 . . . . . . ak−2(p) ak(p)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

The corresponding Hurwitz determinants of kth order will be denoted as Hk(p) =
det(Mk(p)), k = 1, . . . , n, [9]. In the next theorem, we will use two submatrices of
the (n − 1)st order Hurwitz matrix (8) which are defined next. The submatrix
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Mn−1, i (p), i = 1, 2 (9)

of (8) is obtained by deleting rows (n − 1) and (n − 2), and columns (n − 1) and
(n − 1 − i), respectively.

A sufficient condition for a single pair of purely imaginary eigenvalues of a
matrix is obtained in [35]. The next theorem is a slight modification of [35, Theo-
rem 2.1] since the Hurwitz matrix (8) of (n − 1)st order Mn−1(p) is used instead of
the Sylvester matrix. This can be done because Mn−1(p) can be obtained from the
Sylvester matrix by row and column reordering. The condition of a positive coefficient
an(p) = det(−J (p)) of (5) where p ∈ S̄ is added to exclude the possibility for a zero
eigenvalue of the Jacobian matrix (4) and to guarantee that all other eigenvalues have
negative real parts.

Theorem 1 If Hn−1(p0) = 0, det(Mn−1,1(p0)) det(Mn−1,2(p0)) > 0 and an(p0) >

0 are satisfied at some parameter value p0 ∈ S̄, then the Jacobian matrix J (p0)

has exactly one pair of purely imaginary eigenvalues and all other eigenvalues have
negative real parts.

Proof Let λi (p), i = 1, . . . , n be the eigenvalues of the Jacobian J (p) defined in
(4). Since p0 ∈ S̄, it follows that the real parts of the eigenvalues of the Jacobian
�(λi (p0)) ≤ 0 for all i . Since an(p0) > 0, the Jacobian J (p0) has no zero eigen-
values. By [35, Theorem 2.1], the first two conditions of the theorem guarantee that
the Jacobian J (p0) has a single pair of purely imaginary eigenvalues. Since p0 ∈ S̄,
it follows that all other eigenvalues have negative real parts. �	

The condition an(p) > 0 is easily satisfied if an(p) consists of positive summands.
The same is true, if both det(Mn−1,1(p)) and det(Mn−1,2(p)) consist of summands of
the same sign.

The next corollary follows by the criterion for simple Hopf bifurcation (Liu’s the-
orem) obtained in [22] under the assumption that all parameters in p except one are
fixed. The condition for a single pair of purely imaginary eigenvalues obtained in
Theorem 1 is equivalent to condition (CH1) from Liu’s theorem [22].

Corollary 1 If the conditions of Theorem 1 are satisfied, and if there exists a smooth
curve of equilibria (p, u∗(p)) for the ODE system (3), and if ∂ Hn−1

∂p (p0) 
= 0, then a
simple Hopf bifurcation exists.

By Corollary 1 oscillations arising from Hopf bifurcation exist, if the additional
condition for non-zero derivative of the (n − 1)st Hurwitz determinant at the point
p0 ∈ S̄ is satisfied. In fact, if in a neighborhood of p0 ∈ S̄, Hopf bifurcation exists, it
follows that p0 ∈ ∂S where ∂S is the boundary of S.

A necessary condition for the existence of a pair of purely imaginary eigenvalues of
the Jacobian matrix (4) is Hn−1(p) = 0 for some values of the parameters p, which fol-
lows by Orlando’s formula [9]. Therefore, the determining condition for the existence
of a pair of purely imaginary eigenvalues in Theorem 1, on which the graph-theoretic
condition will be based, is Hn−1(p) = 0.

The product a1(p) . . . an−1(p) of diagonal entries in the Hurwitz determinant
Hn−1(p) contains at least one positive summand corresponding to a product of diago-
nal entries of the negative Jacobian (4) by assumption (A1). If there exists a negative
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summand in a product ±ai1(p) . . . ain−1(p), i1 + i2 + · · · + in−1 = (n − 1)n/2 of
the Hurwitz determinant Hn−1(p), then there may exist a parameter value p, such
that Hn−1(p) = 0 by continuity. Therefore, obtaining a graph-theoretic condition
leading to Hn−1(p) = 0 for some parameter values of p involves finding structures
in the digraph of a biochemical reaction network that correspond to negative sum-
mands in the Hurwitz determinant Hn−1(p). In general, this is an extremely difficult
problem, since the Hurwitz determinant Hn−1(p) contains a large number of sum-
mands even for relatively small n. However, a simpler sufficient algebraic condition for
Hn−1(p) = 0, which is formulated in Theorem 2, will lead to a simpler graph-theoretic
condition.

If p ∈ S̄, the inequality

0 ≤ Hn−1(p) ≤ a1(p) . . . ak−1(p)ak(p)ak+1(p) . . . an−1(p) (10)

can be used to show that Hn−1(p) = 0 for some p ∈ S̄. A graph-theoretic condition
for oscillations which generalizes the positive cycle condition for oscillations based
on the inequality (10) is obtained in [29]. However, if all coefficients ak(p) > 0 of
(5) for all p ∈ S̄ are not sufficiently small, then (10) can not imply Hn−1(p) = 0 for
any p ∈ S̄. In the next lemma, a more general inequality than (10) that can lead to
Hn−1(p) = 0 for some p ∈ S̄ is obtained.

Lemma 1 Let p ∈ S̄. If Hn−1(p) is the (n − 1)st Hurwitz determinant, then

0 ≤ Hn−1(p) ≤ a1(p) . . . ak−2(p)hk(p)ak+1(p) . . . an−1(p), (11)

where a j (p) ≥ 0, j = 1, . . . , n are the coefficients of the characteristic polynomial
(5) and

hk(p) = ak−1(p)ak(p) − ak−2(p)ak+1(p) ≥ 0, k = 2, . . . , n − 1 (12)

is a principal minor of order two of the Hurwitz matrix (8).

The proof of Lemma 1 follows by Fisher’s inequality [6] and can be found in [27].
The difference between inequality (10) and inequality (11) is in the kth factor on the
right-hand side, where ak(p) lies on the diagonal of Hurwitz matrix (8) and hk(p) has
a corresponding (2 × 2) submatrix also on the diagonal of (8).

A sufficient condition for zero Hurwitz determinant of (n − 1)st order follows
directly by the inequality (11) and the properties of the set S defined in (7).

Theorem 2 If hk(p) ≥ 0, where k ∈ {2, . . . , n − 1}, is sufficiently small for some
parameter values p ∈ S̄, then there exists p0 ∈ S̄, such that Hn−1(p0) = 0.

The principal minor hk(p)defined in (12) contains a positive summand in ak−1(p)ak(p)

corresponding to a product of diagonal entries of the negative Jacobian (4). If hk(p)

contains a positive summand in ak−2(p)ak+1(p), which cannot be cancelled by a sim-
ilar positive summand in ak−1(p)ak(p) and is sufficiently large with respect to all
other positive summands, then hk(p) ≥ 0 can be made small for some values p ∈ S̄.
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Therefore, it follows by Theorem 2, that the problem of finding a graph structure in the
digraph of a biochemical reaction network that corresponds to a negative summand in
Hn−1(p) is reduced to the problem of finding a graph structure that corresponds to a
negative dominant summand in the principal minor (12).

Next we define the digraph associated with a biochemical reaction network, and
cycles and subfactors of the digraph that are needed for the graph-theoretic analysis.

Let D(J ) be the digraph of the Jacobian matrix (4) with a node set V = {1, . . . , n},
where k ∈ V corresponds to species Ak of the biochemical reaction network. We draw
a directed edge or an arc (l, k) if and only if Jkl(p) 
= 0 and denote the set of arcs
by E . The weight function W : E → [Jkl(p)] associates to each arc (l, k) the weight
Jkl(p) 
= 0 of (4) that by assumption (A1) is either positive or negative for all p. Note
that the weighting W = W (f) of the digraph D(J ) depends on the choice of the rate
functions in fk(u), k = 1, . . . , n from the ODE system (3). Therefore, the digraph
D(J ) can be defined as the triple D(J ) = {V, E, W (f)}.

We assume that the digraph D(J ) of a biochemical reaction network is simple, i.e.,
there is at most one arc between any two nodes. The theory developed here can be
extended to the case of a multigraph, where multiple arcs can exist between any two
nodes [15].

We introduce several definitions from graph theory that will be used in the dis-
cussion that follows [15]. A walk (i1, i2, i3, . . . , ik−1, ik) in the digraph D(J ) is a
sequence of nodes, such that (il , il+1), l = 1, . . . , k − 1 is an arc of D(J ). A walk
(i1, i2, i3, . . . , ik−1, ik) with distinct nodes i1, i2, . . . , ik is called a path of D(J ). If
(ik, i1) is also an arc, then the path ck = ck(i1, i2, i3, . . . , ik−1, ik) is a cycle of order
k of the digraph D(J ).

A loop from a node k to k is defined as a cycle of order one. If c1 = c1(k) is a
loop in the digraph D(J ), then J [c1] = Jkk(p) is its corresponding weight. Since the
diagonal entries Jkk(p) < 0, k = 1, . . . , n for all parameter values p by assumption
(A1), the stability properties of the Jacobian (4) are not influenced by its diagonal
entries. Therefore, we will not draw the loops in the digraph D(J ).

If ck = ck(i1, i2, i3, . . . , ik−1, ik) is a cycle of order k of the digraph D(J ) we refer
to the corresponding product

J [ck] = Ji1i2(p)Ji2i3(p) . . . Jik i1(p) (13)

as cycle weight. If J [ck] > 0, then ck is referred to as a positive cycle, and if J [ck] < 0,
then ck is referred to as a negative cycle. Similarly, c1(k) is referred to as a negative
loop since Jkk(p) < 0. If ck is a positive cycle, then J [ck] contains an even number
of negative weights Jkl(p), and if ck is a negative cycle, then J [ck] contains an odd
number of negative weights Jkl(p).

We say that a pair of cycles is disjoint if their node sets are disjoint. A set g =
{c1, c2, . . . , cs}, consisting of pairwise disjoint cycles or loops c j is called a subfactor
of the digraph D(J ). If a subfactor g contains k vertices, then we say that it is of order
k and it is denoted by gk . We will use the notation gk(i1, . . . , ik) for a subfactor gk

with a node set Ik = {i1, . . . , ik} and an arc set EIk , consisting of arcs between nodes
from Ik . We will write shortly gk(Ik) for gk(i1, . . . , ik). If |gk | is the number of cycles
in gk , then the subfactor weight is defined as
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J [gk] = (−1)|gk | ∏

c∈gk

J [c], (14)

where J [c] is the cycle weight of a cycle c ∈ gk defined in (13). If J [gk] < 0, then
gk is referred to as a negative subfactor, and if J [gk] > 0, then gk is referred to
as a positive subfactor. It follows by (14) that a positive subfactor contains an even
number of positive cycles and similarly a negative subfactor contains an odd number
of positive cycles. Since a0(p) = 1 in (5), we assume that a subfactor of order zero
g0 = ∅, where ∅ is the empty set, has weight J [g0] = 1.

Lemma 2 Any principal minor M(−J (p))(Ik) of the negative Jacobian (4), where
Ik = {i1, . . . , ik} ⊆ {1, . . . , n} can be represented in a graph-theoretic form as

M(−J (p))(Ik) =
∑

gk (Ik )∈D(J )

J [gk(Ik)] =
∑

gk (Ik )∈D(J )

(−1)|gk | ∏

c∈gk (Ik )

J [c].

(15)

For additional explanation and proofs of similar formulas see [3,4,28–30,40]. The
next theorem follows by (6) and Lemma 2.

Theorem 3 A coefficient ak(p) of the characteristic polynomial (5) can be represented
in a graph-theoretic form as

ak(p) =
∑

gk∈D(J )

J [gk] =
∑

gk∈D(J )

(−1)|gk | ∏

c∈gk

J [c], k = 1, . . . , n, (16)

where the sum is over all subfactors gk of order k.

It follows by (16) that each non-zero summand in the expansion of ak(p) is in
one-to-one correspondence with a subfactor gk ∈ D(J ).

Next we obtain a graph-theoretic formula for the principal minor hk(p), defined in
(12), using the graph-theoretic formula (16).

Corollary 2 The graph-theoretic representation of hk(p), defined in (12), is

hk(p) =
∑

(gk−1,gk )

J [gk−1]J [gk] −
∑

(gk−2,gk+1)

J [gk−2]J [gk+1], k = 2, . . . , n − 1

(17)

where the first sum is over all pairs of subfactors (gk−1, gk) and the second sum is
over all pairs of subfactors (gk−2, gk+1).
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Proof By (12) and (16) it follows that

hk(p) = ak−1(p)ak(p) − ak−2(p)ak+1(p)

=
∑

gk−1∈D(J )

J [gk−1]
∑

gk∈D(J )

J [gk] −
∑

gk−2∈D(J )

J [gk−2]
∑

gk+1∈D(J )

J [gk+1]

=
∑

(gk−1,gk )

J [gk−1]J [gk] −
∑

(gk−2,gk+1)

J [gk−2]J [gk+1].

�	

Each non-zero summand in the first sum of (17) corresponds uniquely to a pair of
subfactors (gk−1, gk) and similarly, each non-zero summand in the second sum corre-
sponds to a pair of subfactors (gk−2, gk+1). The idea of using the graph-theoretic rep-
resentation (17) of the principal minor (12) is to find summands J [gk−2]J [gk+1] > 0
that cannot be cancelled by similar summands J [gk−1]J [gk] > 0 and can be made
larger than any J [gk−1]J [gk] > 0. This way hk(p) ≥ 0 can be made sufficiently small
for some parameter values p ∈ S̄ which will allow us to use Theorem 2.

The order of a pair of subfactors (gs, gr ) is defined as the sum of their orders, s +r .
The node multiset of a pair of subfactors (gs(Is), gr (Ir )) is the list of all their nodes
{Is, Ir } including the repeated nodes. Similarly, the arc multiset of a pair of subfactors
(gs(Is), gr (Ir )) is the list of all their arcs {EIs , EIr } including the repeated arcs. We say
that a pair of subfactors (gk−1, gk) is node identical to a pair of subfactors (gk−2, gk+1)

if they have the same node multisets, {Ik−1, Ik} = {Ik−2, Ik+1}. Similarly, a pair of
subfactors (gk−1, gk) is arc identical to a pair of subfactors (gk−2, gk+1) if they have
the same arc multisets, {EIk−1, EIk } = {EIk−2 , EIk+1}. We say that a pair of subfactors
(gk−1, gk) is identical to a pair of subfactors (gk−2, gk+1) if they are node identical
and arc identical. Note that identical pairs of subfactors have the same multiset of
cycles and loops.

For any pair of subfactors (gk−2(Ik−2), gk+1(Ik+1)) there exists a node identi-
cal pair (gk−1(Ik−1), gk(Ik)), because if the node set of gk+1 is Ik+1 = Ik

⋃{ik+1}
where ik+1 /∈ Ik−2, then the node set of gk is Ik and the node set of gk−1 is Ik−1 =
Ik−2

⋃{ik+1}. On the other hand, there exist pairs (gk−1(Ik−1), gk(Ik)) that are not
node identical to any pair (gk−2(Ik−2), gk+1(Ik+1)). If Ik−1 = Ik−2

⋃{ik−1} ⊂ Ik ,
then the node set of gk−2 is Ik−2 and the the node set Ik+1 = Ik

⋃{ik−1} of gk+1
must contain a repeated node, which is not allowed. If two pairs of the same order are
not node identical, then they are not arc identical either, since their arc multisets are
different.

There can exist pairs of subfactors (gk−2, gk+1) that are not arc identical to any pair
of node identical subfactors (gk−1, gk). For example, if the pair (gk−2, gk+1) contains
a cycle ck+1 of order (k + 1) which cannot be contained in a subfactor gk−1 or gk ,
then the arc multiset of the pair (gk−2, gk+1) contains an arc which is not in the arc
multiset of any node identical pair (gk−1, gk).

If (gs, gr ) is a pair of subfactors, then its corresponding weight is defined as
J [gs]J [gr ]. A pair of positive (negative) subfactors (gs, gr ) has positive weight
J [gs]J [gr ] > 0. Similarly, a pair of a positive (negative) subfactor gs and a negative
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(positive) subfactor gr has a negative weight J [gr ]J [gs] < 0. If two pairs of subfactors
are identical, then they have the same weight. If a pair of subfactors (gk−2, gk+1) with
a positive weight is not arc identical to any pair (gk−1, gk), then for some weighting
W (f) of D(J ) its weight J [gk−2]J [gk+1] > 0 can be chosen larger than the weight
J [gk−1]J [gk] > 0 of all such pairs (gk−1, gk).

We say that a pair of subfactors (gk−2, gk+1), k = 2, . . . , n − 1 is critical, if it has
positive weight, and if no pair of node identical subfactors (gk−1, gk) with positive
weight is also arc identical to (gk−2, gk+1). Note that a critical pair of subfactors
(gk−2, gk+1) is also not arc identical to pairs (gk−1, gk) that are not node identical
to it.

Some examples of critical pairs of subfactors are: (g0, g3) = (∅, c3), where c3 is
a negative cycle of order three and ∅ is the empty set; (g1, g4), where g1 = c1(i) is
a negative loop and g4 = c4 is a negative cycle of order four or g4 = {c1(i), c3} and
c3 is a negative cycle of order three; (g2, g5), where g2 = c2 is a negative cycle of
order two, or g2 = {c1(i), c1( j)}, i 
= j consists of two negative loops and c5 is a
negative cycle of order five. Note that each of the critical pairs contains a cycle of
order k + 1 ≥ 3.

The weight J [gk−2]J [gk+1] > 0 of a critical pair (gk−2, gk+1) can be made larger
for some choice of the weighting W (f) by increasing the weight of the arcs that are
not in the arc multiset of pairs (gk−1, gk) with a positive weight. Therefore, the weight
J [gk−2]J [gk+1] > 0 of a critical pair (gk−2, gk+1) can be made larger than the weights
J [gk−1]J [gk] > 0 of pairs of subfactors (gk−1, gk) in (17). Thus, hk(p) can be made
smaller by making the weights of the critical pairs of subfactors the dominant negative
summands in (17).

If the subfactors of a pair (gk−2, gk+1) consist of loops and cycles of order two, then
there always exists an identical pair of subfactors (gk−1, gk). This can be proved simi-
larly to Proposition 2 in [27]. Hence, a critical pair of subfactors (gk−2, gk+1) contains
a cycle of order at least 3. Therefore, we will assume that the biochemical reaction
network modeled by the ODE system (3) has n ≥ 3 number of species. We note that
the restriction on the number of species n ≥ 3 applies to systems showing oscillations
arising from a negative cycle and its generalizations studied here. Oscillations can
arise from a positive cycle and more complex graph structures, such as critical sub-
factors [28], in which case the number of species n of a biochemical reaction network
is restricted to n ≥ 2.

In the next theorem we show that hk(p), defined in (17), can be made arbitrarily
small for some weighting W ( f ) of the digraph D(J ) and some parameter values
p ∈ S̄, if D(J ) contains a critical pair of subfactors.

Theorem 4 Let the biochemical reaction network associated with the ODE system
(3) have n ≥ 3 species. If the digraph D(J ) of the Jacobian (4) has a critical pair of
subfactors (gk−2, gk+1), k ∈ {2, . . . , n − 1}, then hk(p) ≥ 0 can be made arbitrarily
small for some weighting W (f) of the digraph D(J ) and some parameter values p ∈ S̄.

Proof By assumption, hk(p), defined in (17), contains at least one positive sum-
mand J [gk−1]J [gk], where the subfactors gk−1 and gk consist of negative loops.
Let hk(p) contain a summand J [gk−2]J [gk+1] > 0 corresponding to a critical pair of
subfactors (gk−2, gk+1) which can be made dominant with respect to all summands
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J [gk−1]J [gk] > 0 for some weighting W (f). Then, we can choose parameters p ∈ S̄
such that the positive summands in hk(p) ≥ 0 are small and the dominant summand
J [gk−2]J [gk+1] > 0 is sufficiently large. Therefore, hk(p) can be made small for
some parameters p ∈ S̄. �	

The next corollary follows by Theorems 2, 4 and Corollary 1.

Corollary 3 If hk(p) ≥ 0, where k ∈ {2, . . . , n − 1} can be made sufficiently small
for some parameter values p ∈ S̄, then Hn−1(p0) = 0 for some p0 ∈ S̄. If an(p0) >

0, det(Mn−1,1(p0)) det Mn−1,2(p0)) > 0, where Mn−1,i (p), i = 1, 2 are submatrices
of the Hurwitz matrix (8) and ∂ Hn−1

∂p (p0) 
= 0, then a simple Hopf bifurcation exists.

4 Example

In the 1960’s F. Jacob and J. Monod introduced a negative feedback mechanism for
the control of gene regulation in cellular pathways [17]. Later, Goodwin [13] proposed
the first mathematical model for the same biochemical control mechanism. A four-
variable variant of a compartmental model with diffusion and time delays, where the
compartments are the nucleus and the cytoplasm of a cell, was created and analyzed
in [23,24]. Here we will discuss the corresponding ODE model and find all critical
pairs that can lead to oscillations.

We renumber the reactants and rename the kinetic parameters from Ref. [23] for
convenience, but use the same order of equations. The concentrations of the mRNA
and the repressor in the nucleus are denoted by u1 and u2, respectively. Similarly, the
concentrations of the mRNA and the repressor in the cytoplasm are denoted by u3 and
u4, respectively. Then, the ODE system is

du1

dt
= f (u2) − u1 + k1(u3 − u1), (18a)

du2

dt
= −k2u2 + k3(u4 − u2) (18b)

du3

dt
= −u3 + k4(u1 − u3), (18c)

du4

dt
= k5u3 − k6u4 + k7(u2 − u4), (18d)

where

f (u2) = 1

1 + kuh
2

is an inhibiting Hill type function and h > 0 is a Hill coefficient. Therefore, we have

f ′(u2) = − khuh−1
2

(1 + kuh
2)2

< 0.

123



1122 J Math Chem (2012) 50:1111–1125

Fig. 1 Weighted digraph of the
genetic model (18a)–(18d) with
Jacobian (19)

Since the equation f (u2) = Cu2, where C > 0 is a constant, has a positive solution
for some parameter values, it can be shown that there exists a positive equilibrium of
(18a)–(18d).

The Jacobian of the right-hand side of (18a)–(18d) is

J =

⎛

⎜⎜⎝

−1 − k1 f ′(u2) k1 0
0 −k2 − k3 0 k3
k4 0 −1 − k4 0
0 k7 k5 −k6 − k7

⎞

⎟⎟⎠ , (19)

and the digraph D(J ) of the model reaction is shown in Fig. 1.
Next we list all critical pairs of subfactors. Since a subfactor in a critical pair con-

tains a cycle of order at least three, then a subfactor of order four should contain the
negative cycle of order four c4(1, 3, 4, 2) = c−

4 . We show that (g1, g4) = (c1(i), c−
4 ),

i = 1, 2, 3, 4 where c1(i) is a negative loop, forms a critical pair of subfactors. For
example, (c1(3), c−

4 ) is a critical pair of subfactors with a node multiset {1, 2, 3, 3, 4},
because any pair of subfactors (g2, g3) with positive weight which is node identi-
cal to (c1(3), c−

4 ) is not arc identical to it. The node identical pairs of subfactors to
(c1(3), c−

4 ) with positive weight are: (g2(1, 3), g3(2, 3, 4)), (g2(2, 3), g3(1, 3, 4)) and
(g2(3, 4), g3(1, 2, 3)), where each subfactor consists of negative loops only. The arc
multiset of (c1(3), c−

4 ) is {(3, 3), (1, 3), (3, 4), (4, 2), (2, 1)}, where only the arc (3, 3)

is in the multisets of its node identical pairs of subfactors. Therefore, (c1(3), c−
4 ) is a

critical pair of subfactors with weight J [c1(3)]J [c−
4 ] = −(1 + k4)k3k4k5 f ′(u2) > 0.

Similarly, it can be shown that the pairs of subfactors (c1(1), c−
4 ), (c1(2), c−

4 ) and
(c1(4), c−

4 ) are critical.
Interesting and perhaps not surprising, is the fact that the arc multiset of each crit-

ical pair contains the arc (2, 1) with weight f ′(u2). This, in particular, increases the
possibility that a critical pair of subfactors (g1, g4) will correspond to a dominant
negative summand in h3(p) given by (17). In fact, it can be confirmed using Maple
that

h3(p) = (2 + k6 + k7 + k4 + k2 + k3 + k1) k4k3k5 f ′(u2) + q(k) (20)
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where q(k) > 0 is a fifth degree polynomial in k = (k1, k2, k3, k4, k6, k7). If k5 and
− f ′(u2) are chosen large enough, then the negative summands in (20) corresponding
to critical pairs will dominate the positive summands in q(k) > 0.

It follows by Theorem 4 that h3(p) ≥ 0 can be made arbitrarily small for some
p ∈ S̄ and for the weighting W (f) of the digraph D(J ), where f is the right-hand side
of (18a)–(18d). It follows by Corollary 3 that if h3(p) ≥ 0, p ∈ S̄ is sufficiently small
and the other algebraic conditions of the corollary are satisfied, then Hopf bifurcation
and oscillations occur.

5 Discussion

The existence of a critical pair of subfactors (special subnetworks of mutually non-
intersecting cycles) in the digraph of a biochemical reaction network is shown to be
responsible for potential oscillations in a corresponding ODE model. The obtained
graph-theoretic condition is novel, since it shows that oscillations can arise from a
critical pair of subfactors where each subfactor contains an even number of positive
cycles, rather than from a single negative cycle. For three-species biochemical net-
works the negative cycle condition for oscillations is a special case of the critical pair
condition for oscillations, where one of the subfactors consists of the negative cycle
and the other is the empty set. In larger biochemical networks, another special case
of a critical pair of subfactors is a pair where both of the subfactors consist of either
negative or positive cycles.

The existence of a critical pair of subfactors is only one of the conditions for oscil-
lations arising from Hopf bifurcation. The rate functions giving the weighting of the
digraph, as well as the parameter values and the equilibrium concentrations, will fur-
ther determine if the ODE system will exhibit oscillations. Once a critical pair of
subfactors has been identified, other algebraic conditions formulated in Corollary 3
need to be satisfied in order for oscillations to occur.

In this article we have discussed oscillations associated with a negative cycle, or as
it is often referred to, with negative feedback. Oscillations arising from all possible
generalizations of the negative cycle condition are still to be classified.

If multiple activations or inhibitions exist between species in a biochemical reac-
tion network, then the network can be represented by a directed multigraph where
more than one arc is allowed between any two nodes [28]. Graph-theoretic conditions
generalizing the negative cycle condition for oscillations in the case of the multigraph
will be studied elsewhere.

The graph-theoretic methods presented here are suitable for computerization and
therefore can be applied to large biochemical reaction network models. The develop-
ment of efficient algorithms for finding pairs of subfactors will be necessary.
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